COLUMBUS — The discovery that a bacterial species in the Australian Tammar wallaby gut is responsible for keeping the animal’s methane emissions relatively low suggests a potential new strategy may exist to try to reduce methane emissions from livestock, according to a new study.
Globally, livestock are the largest source of methane from human-related activities, and are the third-largest source of this greenhouse gas in the United States, according to the U.S. Environmental Protection Agency.
Wallabies and other marsupials — mammals like the kangaroo that develop their offspring in a pouch — are dependent on microbes to support their digestive system, similar to livestock such as cows, sheep and goats, but Tammar wallabies are known to release about 80 percent less methane gas per unit of digestible energy intake than do livestock animals.
Scientists have used DNA sequence data to devise a way to isolate and grow cultures of a dominant bacterial species from the Tammar wallaby gut and test its characteristics. The analysis confirmed that this bacterium would contribute to a digestion process that produces low levels of methane.
Using this information, scientists hope to devise a way to augment the microbial mix in livestock animals’ digestive systems and therefore reduce their methane emissions.
An added bonus for the wallabies, the researchers say, is that the presence of this bacterium frees up more digestible energy for nutritional purposes in host animals.